6 research outputs found

    Bringing Salary Transparency to the World: Computing Robust Compensation Insights via LinkedIn Salary

    Full text link
    The recently launched LinkedIn Salary product has been designed with the goal of providing compensation insights to the world's professionals and thereby helping them optimize their earning potential. We describe the overall design and architecture of the statistical modeling system underlying this product. We focus on the unique data mining challenges while designing and implementing the system, and describe the modeling components such as Bayesian hierarchical smoothing that help to compute and present robust compensation insights to users. We report on extensive evaluation with nearly one year of de-identified compensation data collected from over one million LinkedIn users, thereby demonstrating the efficacy of the statistical models. We also highlight the lessons learned through the deployment of our system at LinkedIn.Comment: Conference information: ACM International Conference on Information and Knowledge Management (CIKM 2017

    How LinkedIn Economic Graph Bonds Information and Product: Applications in LinkedIn Salary

    Full text link
    The LinkedIn Salary product was launched in late 2016 with the goal of providing insights on compensation distribution to job seekers, so that they can make more informed decisions when discovering and assessing career opportunities. The compensation insights are provided based on data collected from LinkedIn members and aggregated in a privacy-preserving manner. Given the simultaneous desire for computing robust, reliable insights and for having insights to satisfy as many job seekers as possible, a key challenge is to reliably infer the insights at the company level when there is limited or no data at all. We propose a two-step framework that utilizes a novel, semantic representation of companies (Company2vec) and a Bayesian statistical model to address this problem. Our approach makes use of the rich information present in the LinkedIn Economic Graph, and in particular, uses the intuition that two companies are likely to be similar if employees are very likely to transition from one company to the other and vice versa. We compute embeddings for companies by analyzing the LinkedIn members' company transition data using machine learning algorithms, then compute pairwise similarities between companies based on these embeddings, and finally incorporate company similarities in the form of peer company groups as part of the proposed Bayesian statistical model to predict insights at the company level. We perform extensive validation using several different evaluation techniques, and show that we can significantly increase the coverage of insights while, in fact, even improving the quality of the obtained insights. For example, we were able to compute salary insights for 35 times as many title-region-company combinations in the U.S. as compared to previous work, corresponding to 4.9 times as many monthly active users. Finally, we highlight the lessons learned from deployment of our system.Comment: 10 pages, 5 figure
    corecore